

A Wearable System for Posture Monitoring: High- Fidelity Validation via 4D Scanning

Andrei Danielescu, Anselm Naake, Ramona Popa, Nicolae
Goga, Andrei Vasilăteanu, Yordan Kyosev

The Problem: Poor posture from office work is a major health concern

- A growing concern that comes with complications in the long term
- Leads to chronic back pain and musculoskeletal disorders
- How to provide continuous, real-time feedback in a casual setting?

Our Proposed Solution: A smart Garment

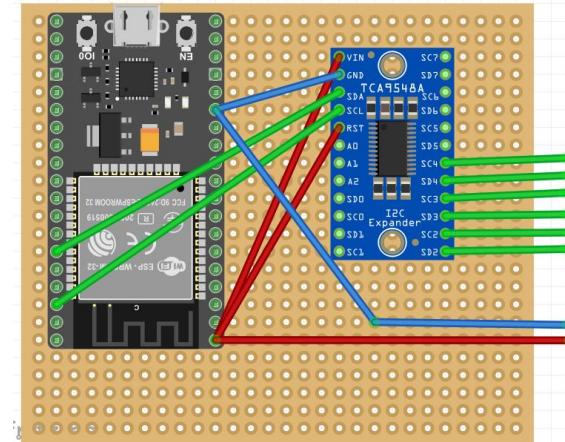
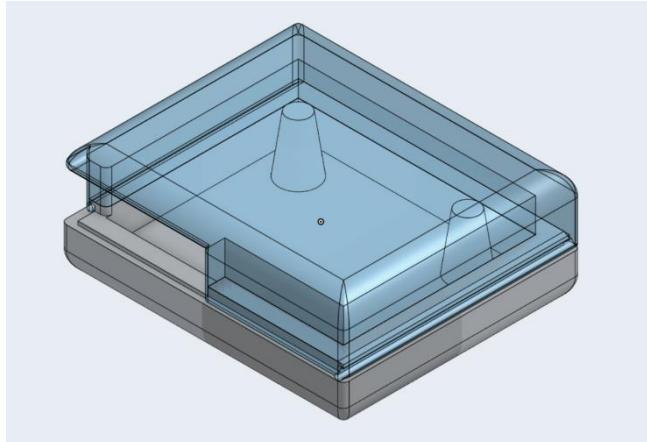
- **Concept:** a smart T-shirt with integrated sensors to monitor spinal posture
- **Goal:** Provide immediate, intuitive feedback to the wearer.
- **Key Question:** How do we know it is accurate?

4D Scanning - Measuring movement

High-fidelity validation of IMUs

We have used a 4D body scanning system as the **ground truth**.

The goal: compare the IMU sensors' output against the scan.
How accurate are the results?

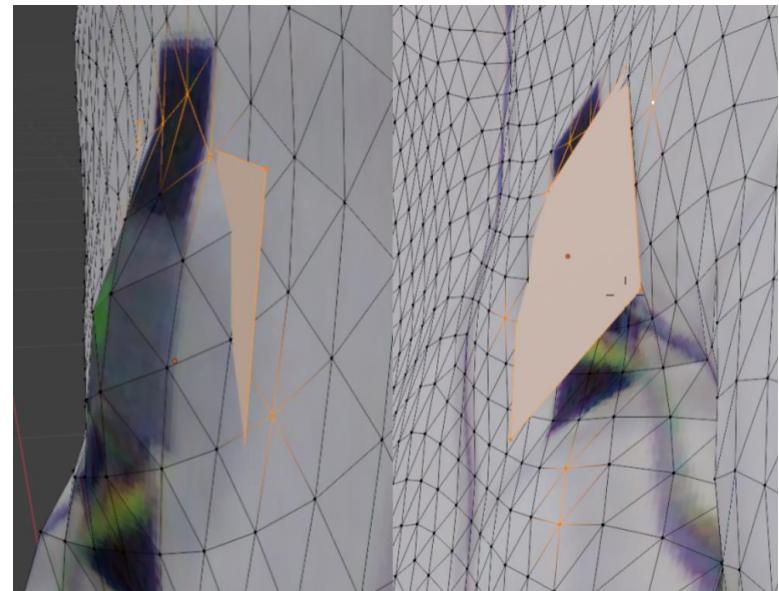



Methodology Pt. 1 - The Hardware System

Core: ESP32 microcontroller + I2C Multiplexer PCB

Sensors: 3x MPU6050 6-axis IMUs, placed in cases at C7, T10, L2 vertebrae markers on the T-Shirt

Connectivity: Wi-fi transmission to a desktop for real-time collection and graphing



Methodology Pt. 2 - IBV MOVE4D Scanner

System: 30fps scanner that returns (per 6 seconds) 180 vertex meshes corresponding to the position of the body and clothing to 1mm.

Goal: Calculate Best Fit Planes from vertices around the sensor positioning

Validation: Compare results to angle provided by the sensors

Results: Upper Sensor (Near-Perfect Match)

Across all three scans, the Upper Sensor (positioned at C7 vertebrae) achieved a near-perfect **Pearson correlation ($r > 0.99$)** and a low average **RMSE** of approximately 1° .

This result validates that a single IMU placed at the upper thoracic/lower cervical region can accurately track the angles of the flexion and extension movements associated with slouching

Insightful Findings: Why Other Sensors Diverged

Medial Sensor (T10)

The Medial Sensor exhibited a “muffled” response. Of note is that while it maintained a strong correlation with the scanner data ($r > 0.95$ in two scans) its response was significantly attenuated, resulting in absolute error (RMSE $> 8.5^\circ$). This is due to the placement of the sensor near the **axis of the spinal rotation**, undergoing minimal tilting.

Lower Sensor (L2)

The Lower Sensor showed the poorest performance, with little to no dynamic response to spinal motion. This is due to “**Fabric Decoupling**” of a non compression T-Shirt.

Key Takeaways

Concept Validation

Can a IMU based smart garment accurately monitor slouching? **Yes**, with sensors placed at the cervical region (C7 vertebrae).

Challenges and Findings

Sensor placement and fabric-body coupling are critical findings that highlight the importance of a compression garment.

Future Work

Design a purpose-built compression garment to solve decoupling, as well as smaller, more integrated sensor profiles - or textile based stretch sensors.

Acknowledgements

This work is part of the RETEX Consortium.

The 4D Scanning was conducted at ITM, TU Dresden.

Thank you!

Questions

References

- [1] T. J. Saunders et al., "Sedentary behaviour and health in adults: an overview of systematic reviews," *Applied Physiology, Nutrition, and Metabolism*, vol. 45, no. 10 (suppl. 2), pp. S197-S217, 2020. doi: 10.1139/apnm-2020-0272.
- [2] B. Demissie, E. T. Bayih, and A. A. Demmelash, "A systematic review of work-related musculoskeletal disorders and risk factors among computer users," *Heliyon*, vol. 10, no. 3, Art. no. e25075, 2024. doi: 10.1016/j.heliyon.2024.e25075.
- [3] L. Simpson, M. M. Maharaj, and R. J. Mobbs, "The role of wearables in spinal posture analysis: a systematic review," *BMC Musculoskeletal Disorders*, vol. 20, Art. no. 55, 2019. doi: 10.1186/s12891-019-2430-6.
- [4] S. Mironcika, A. Hupfeld, J. Frens, J. Asjes, and S. Wensveen, "Snap-Snap T-shirt: posture awareness through playful and somaesthetic experience," in *Proc. Fourteenth Int. Conf. Tangible, Embedded, and Embodied Interaction (TEI '20)*, New York, NY, USA: Association for Computing Machinery, 2020, pp. 799-809. doi: 10.1145/3374920.3375013.
- [5] R. Bootsman, P. Markopoulos, Q. Qi, Q. Wang, and A. A. Timmermans, "Wearable technology for posture monitoring at the workplace," *International Journal of Human-Computer Studies*, vol. 132, pp. 99-111, 2019. doi: 10.1016/j.ijhcs.2019.08.003.

References

- [1] L. E. Dunne, P. Walsh, S. Hermann, B. Smyth, and B. Caulfield, "Wearable monitoring of seated spinal posture," *IEEE Transactions on Biomedical Circuits and Systems*, vol. 2, no. 2, pp. 97-105, June 2008. doi: 10.1109/TBCAS.2008.927246.
- [2] P. Gui, L. Tang, and S. Mukhopadhyay, "MEMS based IMU for Tilting Measurement: Comparison of complementary and Kalman filter based data fusion," *2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)*, 2015, doi:10.1109/iciea.2015.7334442
- [3] Y. Kyosev et al., "Method for automatic analysis of the clothing related body dimension changes during motion using high-speed (4D) body scanning," in *Proc. 13th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies (3DBODY.TECH)*, Lugano, Switzerland, Oct. 25-26, 2022, paper 24. doi: 10.15221/22.24.
- [4] T. Kuehn and Y. Kyosev, "4D scanning of clothed humans - Preliminary results," in *Proc. 12th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies (3DBODY.TECH)*, Lugano, Switzerland, Oct. 19-20, 2021, paper 25. doi: 10.15221/21.25.
- [5] M. Avadanei, D. Vatra, and M. Rosca, "The influence of body biomechanics on the geometry of clothing patterns," *Communications in Development and Assembling of Textile Products*, vol. 4, no. 2, pp. 231-241, 2023. doi: 10.25367/cdatp.2023.4.p231-241.